Second Order Hamilton--Jacobi Equations in Hilbert Spaces and Stochastic Boundary Control
نویسندگان
چکیده
The paper is concerned with fully nonlinear second order Hamilton{Jacobi{Bellman{ Isaacs equations of elliptic type in separable Hilbert spaces which have unbounded rst and second order terms. The viscosity solution approach is adapted to the equations under consideration and the existence and uniqueness of viscosity solutions is proved. A stochastic optimal control problem driven by a parabolic stochastic PDE with control of Dirichlet type on the boundary is considered. It is proved that the value function of this problem is the unique viscosity solution of the associated Hamilton{Jacobi{Bellman equation.
منابع مشابه
Hamilton-Jacobi Equation for Optimal Control of Nonlinear Stochastic Distributed Parameter Systems Applied to Air Pollution Process
This paper derives Hamilton-Jacobi equation (HJE) in Hilbert space for optimal control of stochastic distributed parameter systems (SDPSs) governed by partial differential equations (SPDEs) subject to both state-dependent and additive stochastic disturbances. First, nonlinear SDPSs are transformed to stochastic evolution systems (SESs), which are governed by stochastic ordinary differential equ...
متن کاملLinear-exponential-quadratic Gaussian Control for Stochastic Partial Differential Equations
In this paper a control problem for a controlled linear stochastic equation in a Hilbert space and an exponential quadratic cost functional of the state and the control is formulated and solved. The stochastic equation can model a variety of stochastic partial differential equations with the control restricted to the boundary or to discrete points in the domain. The solution method does not req...
متن کاملInfinite-Dimensional Hamilton-Jacobi-Bellman Equations in Gauss-Sobolev Spaces
We consider the strong solution of a semi linear HJB equation associated with a stochastic optimal control in a Hilbert space H. By strong solution we mean a solution in a L2(μ,H)-Sobolev space setting. Within this framework, the present problem can be treated in a similar fashion to that of a finite-dimensional case. Of independent interest, a related linear problem with unbounded coefficient ...
متن کاملOptimal Control of ∞-dimensional Stochastic Systems via Generalized Solutions of Hjb Equations
In this paper, we consider optimal feedback control for stochastc infinite dimensional systems. We present some new results on the solution of associated HJB equations in infinite dimensional Hilbert spaces. In the process, we have also developed some new mathematical tools involving distributions on Hilbert spaces which may have many other interesting applications in other fields. We conclude ...
متن کاملStationary Hamilton--Jacobi Equations in Hilbert Spaces and Applications to a Stochastic Optimal Control Problem
We study an infinite horizon stochastic control problem associated with a class of stochastic reaction-diffusion systems with coefficients having polynomial growth. The hamiltonian is assumed to be only locally Lipschitz continuous so that the quadratic case can be covered. We prove that the value function V corresponding to the control problem is given by the solution of the stationary Hamilto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Control and Optimization
دوره 38 شماره
صفحات -
تاریخ انتشار 2000